Uniprojective Features for Gait Recognition

نویسندگان

  • Daoliang Tan
  • Kaiqi Huang
  • Shiqi Yu
  • Tieniu Tan
چکیده

Recent studies have shown that shape cues should dominate gait recognition. This motivates us to perform gait recognition through shape features in 2D human silhouettes. In this paper, we propose six simple projective features to describe human gait and compare eight kinds of projective features to figure out which projective directions are important to walker recognition. First, we normalize each original human silhouette into a square form. Inspired by the pure horizontal and vertical projections used in the frieze gait patterns, we explore the positive and negative diagonal projections with or without normalizing silhouette projections and obtain six new uniprojective features to characterize walking gait. Then this paper applies principal component analysis (PCA) to reduce the dimension of raw gait features. Finally, we recognize unknown gait sequences using the Mahalanobis-distance-based nearest neighbor rule. Experimental results show that the horizontal and diagonal projections have more discriminative clues for the side-view gait recognition and that the projective normalization generally can improve the robustness of projective features against the noise in human silhouettes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Depth video-based gait recognition for smart home using local directional pattern features and hidden Markov model

Gait recognition at smart home is considered as a primary function of the smart system nowadays. The significance of gait recognition is high especially for the elderly as gait is one of the basic activities to promote and preserve their health. In this work, a novel method was proposed for human gait recognition by processing depth videos from a depth camera. The gait recognition method utiliz...

متن کامل

Human gait recognition from motion capture data in signature poses

Abstract Most contribution to the field of structure-based human gait recognition has been done through design of extraordinary gait features. Many research groups that address this topic introduce a unique combination of gait features, select a couple of well-known object classifiers, and test some variations of their methods on their custom Kinect databases. For a practical system, it is not ...

متن کامل

Gait Analysis for Recognition and Classification

This paper describes a representation of gait appearance for the purpose of person identification and classification. This gait representation is based on simple features such as moments extracted from orthogonal view video silhouettes of human walking motion. Despite its simplicity, the resulting feature vector contains enough information to perform well on human identification and gender clas...

متن کامل

An Efficient Gait based Recognition using Bat Algorithm

Gait is the walking style of a person. The gait recognition method uses the concept of extracting the features from the video sequence. These features can be used in surveillance systems to identify the individual. In this paper, gait recognition using Multi objective Bat algorithm is proposed in which the shape descriptor features are included to improve the accuracy of gait recognition. Gait ...

متن کامل

An Efficient Gait based Recognition using Bat Algorithm

Gait is the walking style of a person. The gait recognition method uses the concept of extracting the features from the video sequence. These features can be used in surveillance systems to identify the individual. In this paper, gait recognition using Multi objective Bat algorithm is proposed in which the shape descriptor features are included to improve the accuracy of gait recognition. Gait ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007